Variational Methods for Machine Learning with Applications to Deep Networks

$15.99

Variational Methods for Machine Learning with Applications to Deep Networks
Authors: Lucas Pinheiro Cinelli
Year: 2021
Publisher: Springer
Language: English
ISBN 13: 9783030706784
ISBN 10: 3030706788
Categories: Computers, Computer Science
Pages: 320 / 319
Edition:

Availability: 5000 in stock

SKU: 9783030706784 Categories: ,

Variational Methods for Machine Learning with Applications to Deep Networks Lucas Pinheiro Cinelli, Matheus Araújo Marins, Eduardo Antônio Barros da Silva, Sérgio Lima Netto
This book provides a straightforward look at the concepts, algorithms and advantages of Bayesian Deep Learning and Deep Generative Models. Starting from the model-based approach to Machine Learning, the authors motivate Probabilistic Graphical Models and show how Bayesian inference naturally lends itself to this framework. The authors present detailed explanations of the main modern algorithms on variational approximations for Bayesian inference in neural networks. Each algorithm of this selected set develops a distinct aspect of the theory. The book builds from the ground-up well-known deep generative models, such as Variational Autoencoder and subsequent theoretical developments. By also exposing the main issues of the algorithms together with different methods to mitigate such issues, the book supplies the necessary knowledge on generative models for the reader to handle a wide range of data types: sequential or not, continuous or not, labelled or not. The book is self-contained, promptly covering all necessary theory so that the reader does not have to search for additional information elsewhere. Offers a concise self-contained resource, covering the basic concepts to the algorithms for Bayesian Deep Learning;Presents Statistical Inference concepts, offering a set of elucidative examples, practical aspects, and pseudo-codes;Every chapter includes hands-on examples and exercises and a website features lecture slides, additional examples, and other support material. Categories:
Computers – Computer Science
Year:
2021
Publisher:
Springer
Language:
english
Pages:
179 / 173
ISBN 10:
3030706788
ISBN 13:
9783030706784
File:
60 MB

Reviews

There are no reviews yet.

Only logged in customers who have purchased this product may leave a review.

Shopping Cart
Variational Methods for Machine Learning with Applications to Deep Networks
$15.99

Availability: 5000 in stock